National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Quantum aspects of particle physics models with extended gauge symmetries
Sýkorová, Kateřina ; Malinský, Michal (advisor)
In this thesis, we study quantum aspects of the minimal renormalizable SO(10) Grand Unified Theory with the scalar sector consisting of 45 ⊕ 126 ⊕ 10C. It is an interesting candidate for a theory describing physics beyond the Standard model which has the potential to allow for proton lifetime prediction with Plank- scale-physics-induced theoretical uncertainties confined within the expected one- order-of-magnitude experimental proton lifetime improvement window. With the complete information about the numerical one-loop scalar mass spec- trum and analytical one-loop beta functions of all the dimensionless scalar cou- plings, we formulate consistency criteria that every viable region of the parameter space must satisfy; namely, we require the existence of a stable Standard-model- like vacuum, unification of gauge couplings and robustness of perturbative calcu- lations. Only narrow parameter space regions around symmetry breaking chains with SU(4)C × SU(2)L × U(1)R or SU(3)c × SU(2)L × SU(2)R × U(1)B−L intermedi- ate stages are demonstrated to be potentially realistic. Detailed analysis of the SO(10) Higgs model with 45⊕126 scalar sector indicates a preference for the for- mer option, mainly due to increased perturbative instability and phenomenologi- cally unsuitable values of energy scales predicted in the...
Quantum aspects of particle physics models with extended gauge symmetries
Sýkorová, Kateřina ; Malinský, Michal (advisor) ; Beneš, Petr (referee) ; di Luzio, Luca (referee)
In this thesis, we study quantum aspects of the minimal renormalizable SO(10) Grand Unified Theory with the scalar sector consisting of 45 ⊕ 126 ⊕ 10C. It is an interesting candidate for a theory describing physics beyond the Standard model which has the potential to allow for proton lifetime prediction with Plank- scale-physics-induced theoretical uncertainties confined within the expected one- order-of-magnitude experimental proton lifetime improvement window. With the complete information about the numerical one-loop scalar mass spec- trum and analytical one-loop beta functions of all the dimensionless scalar cou- plings, we formulate consistency criteria that every viable region of the parameter space must satisfy; namely, we require the existence of a stable Standard-model- like vacuum, unification of gauge couplings and robustness of perturbative calcu- lations. Only narrow parameter space regions around symmetry breaking chains with SU(4)C × SU(2)L × U(1)R or SU(3)c × SU(2)L × SU(2)R × U(1)B−L intermedi- ate stages are demonstrated to be potentially realistic. Detailed analysis of the SO(10) Higgs model with 45⊕126 scalar sector indicates a preference for the for- mer option, mainly due to increased perturbative instability and phenomenologi- cally unsuitable values of energy scales predicted in the...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.